827 research outputs found

    Traffic Offloading/Onloading in Multi-RAT Cellular Networks

    Get PDF
    We analyze next generation cellular networks, offering connectivity to mobile users through multiple radio access technologies (RATs), namely LTE and WiFi. We develop a framework based on the Markovian agent formalism, which can model several aspects of the system, including user traffic dynamics and radio resource allocation. In particular, through a mean-field solution, we show the ability of our framework to capture the system behavior in flash-crowd scenarios, i.e., when a burst of traffic requests takes place in some parts of the network service area. We consider a distributed strategy for the user RAT selection, which aims at ensuring high user throughput, and investigate its performance under different resource allocation scheme

    Ab-initio self-energy corrections in systems with metallic screening

    Full text link
    The calculation of self-energy corrections to the electron bands of a metal requires the evaluation of the intraband contribution to the polarizability in the small-q limit. When neglected, as in standard GW codes for semiconductors and insulators, a spurious gap opens at the Fermi energy. Systematic methods to include intraband contributions to the polarizability exist, but require a computationally intensive Fermi-surface integration. We propose a numerically cheap and stable method, based on a fit of the power expansion of the polarizability in the small-q region. We test it on the homogeneous electron gas and on real metals such as sodium and aluminum.Comment: revtex, 14 pages including 5 eps figures v2: few fixe

    Condensate Fraction of a Fermi Gas in the BCS-BEC Crossover

    Get PDF
    We investigate the Bose-Einstein condensation of Fermionic pairs in a uniform two-component Fermi gas obtaining an explicit formula for the condensate density as a function of the chemical potential and the energy gap. We analyze the condensate fraction in the crossover from the Bardeen-Cooper-Schrieffer (BCS) state of weakly-interacting Cooper pairs to the Bose-Einstein Condensate (BEC) of molecular dimers. By using the local density approximation we study confined Fermi vapors of alkali-metal atoms for which there is experimental evidence of condensation also on the BCS side of the Feshbach resonance. Our theoretical results are in agreement with these experimental data and give the behavior of the condensate on both sides of the Feshbach resonance at zero temperature.Comment: 5 pages, 2 figure

    Circular Economy: A Performance Evaluation Perspective

    Get PDF
    Circular Economy has emerged in the last years as an industrial pattern that rethinks the entire design and production cycle of products and goods, to obtain the minimal environmental impact and maximize the energy efficiency. This pattern creates product transformation cycles, that allow to re-use parts and renew energy, defining Circular Economy Ecosystems. Such cycles, are very interesting systems from a performance evaluation point of view: in this paper we give a Colored Petri Net perspective to circular economy. In particular, we focus on an example taken from the literature that considers car manufacturing, and we show how we can deal with the problem using standard performance evaluation techniques. Results from performance analysis of the case study, allow to focus on new interesting metrics and performance indicators, that might not be fully studied with conventional techniques applied by expert of the economical domain

    The Phase Diagram of Correlated Electrons in a Lattice of Berry Molecules

    Full text link
    A model for correlated electrons in a lattice with local additional spin--1 degrees of freedom inducing constrained hopping, is studied both in the low density limit and at quarter filling. We show that in both 1D and 2D two particles form a bound state even in presence of a repulsive U<U_c. A picture of a dilute Bose gas, leading to off-diagonal long range order (LRO) in 2D (quasi-LRO in 1D), is supported by quantitative calculations in 1D which allow for a determination of the phase diagram.Comment: 7 pages + 2 ps figures, published versio

    Superconductivity in a spin liquid - a one dimensional example

    Full text link
    We study a one-dimensional model of interacting conduction electrons with a two-fold degenerate band away from half filling. The interaction includes an on-site Coulomb repulsion and Hund's rule coupling. We show that such one-dimensional system has a divergent Cooper pair susceptibility at T = 0, provided the Coulomb interaction UU between electrons on the same orbital and the modulus of the Hund's exchange integral āˆ£Jāˆ£|J| are larger than the interorbital Coulomb interaction. It is remarkable that the superconductivity can be achieved for {\it any} sign of JJ. The opening of spectral gaps makes this state stable with respect to direct electron hopping between the orbitals. The scaling dimension of the superconducting order parameter is found to be between 1/4 (small UU) and 1/2 (large UU).Comment: 11 pages, Latex, no figure

    Monitoraggio ambientale e biologico dellā€™esposizione ad idrocarburi mono-aromatici ed a metil tert-butil etere in un gruppo di lavoratori addetti allā€™erogazione di carburanti

    Get PDF
    Lo studio ĆØ stato condotto per valutare gli indicatori biologici di esposizione a vapori di benzina in lavoratori addetti allā€™erogazione di carburante tramite un approccio combinato di monitoraggio ambientale e biologico. Lā€™esposizione personale a benzene, toluene, etilbenzene e xilene (BTEX) e lā€™escrezione urinaria di BTEX, metil tert-butil etere (MTBE-U), degli acidi trans,transmuconico (t,t-MA) ed S-fenilmercapturico (S-PMA) e della cotinina sono stati valutati con tecniche cromatografiche accoppiate alla spettrometria di massa. I livelli di MTBE-U erano influenzati dalla sola esposizione professionale a vapori di benzina, mentre quelli di B-U ed S-PMA dipendevano da abitudine tabagica ed esposizione professionale

    Mean-Field vs Monte-Carlo equation of state for the expansion of a Fermi superfluid in the BCS-BEC crossover

    Full text link
    The equation of state (EOS) of a Fermi superfluid is investigated in the BCS-BEC crossover at zero temperature. We discuss the EOS based on Monte-Carlo (MC) data and asymptotic expansions and the EOS derived from the extended BCS (EBCS) mean-field theory. Then we introduce a time-dependent density functional, based on the bulk EOS and Landau's superfluid hydrodynamics with a von Weizs\"acker-type correction, to study the free expansion of the Fermi superfluid. We calculate the aspect ratio and the released energy of the expanding Fermi cloud showing that MC EOS and EBCS EOS are both compatible with the available experimental data of 6^6Li atoms. We find that the released energy satisfies an approximate analytical formula that is quite accurate in the BEC regime. For an anisotropic droplet, our numerical simulations show an initially faster reversal of anisotropy in the BCS regime, later suppressed by the BEC fluid.Comment: 13 pages, 3 figures, presented to the 15th International Laser Physics Workshop (Lausanne, July 24-28, 2006); to be published in Laser Physic
    • ā€¦
    corecore